

Many-Lights Algorithms in Autodesk[®] 360 Rendering

Adam Arbree, Autodesk Inc.

Cloud Platforms

What is Autodesk 360 Rendering?

Autodesk[®] 360

Autodesk' 360 🥥

Features and Services

Autodesk 360 provides a broad set of features, cloud services and cloud-enabled products to help you dramatically improve the way you design, visualize, simulate, and share your work with others anythere.

Features

Storage

Store your design files online through your Autodesk® 360 account so you can access them anytime, anywhere. Get 3GB of free storage instantly by simply creating an account. Additional storage is available with Subscription.

Viewing

More easily share your design files with others—even if they lack the design software used to create the files. Users can view and edit 2D and 3D design files through a web browser using Autodesk 360, or via a mobile device using the Autodesk® Design Review, and AutoCADB V/S mobile apps

Collaboration & Sharing

Easily share files, keep track of file updates, and invite others to comment on designs in the Autodesk® 360 collaboration workspace. Receive email notifications when files are edited or updated. You can also send a file link to other users so they can quickly access and edit work on the go.

Sign In Create Account

Have a Subscription? Your Autodesk® Subscription may entitle you to extended cloud benefits, including more storage. Sign in to Autodesk 360 to learn what cloud services and products you have scenes the

Sign In

Can I get an Account? Yes, anyone can sign up for a FREE account with 3GB of storage!

Cloud Application SuiteExtends the desktop

- Storage
- Collaboration
- Sharing
- Rendering is a new application in Autodesk 360

Autodesk[®] 360 Rendering

- Released in March
- Focus
 - architectural and engineering visualization
- Features
 - Seamless rendering from desktop applications
 - Render Gallery
 - Rerender, enhance and share images

Render Gallery

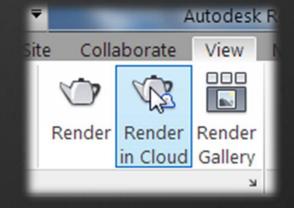
Autodesk[®] Homestyler[®]

Cloud Platforms

 Build and decorate your own model home

 Take "snapshots" to visualize your design

 Images created using Autodesk 360 Rendering


Goals of Our Service

Architectural & Design (i.e. Predictive)

Scalable

Render Quickly, Anywhere

Efficient

Problem

How to automatically, efficiently and reliably produce a large number of physically-accurate renderings in a predictable amount of time?

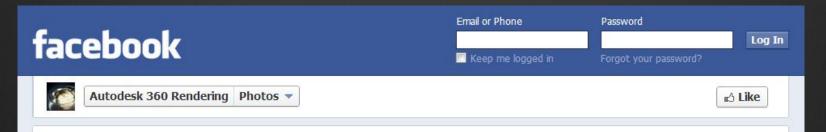
Solution?

A many-lights rendering algorithm.

1,000's of images/day

150s/megapixel (64 cores)

1st million images this year


Courtesy of Jonathan Paul Reyes Martinez, DreamsFactory

Tian Tian, Autodesk® Homestyler®

Autodesk 360 Rendering's Albums

Customer Renderings 104 photos

Customer Renderings - Archive Volume 5 100 photos

Customer Renderings - Archive Volume 4 200 photos

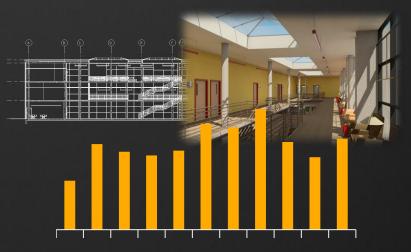
Customer Renderings - Archive Volume 3 200 photos

Customer Renderings - Archive Volume 2 200 photos

Customer Renderings - Archive Volume 1 200 photos

Profile Pictures 3 photos

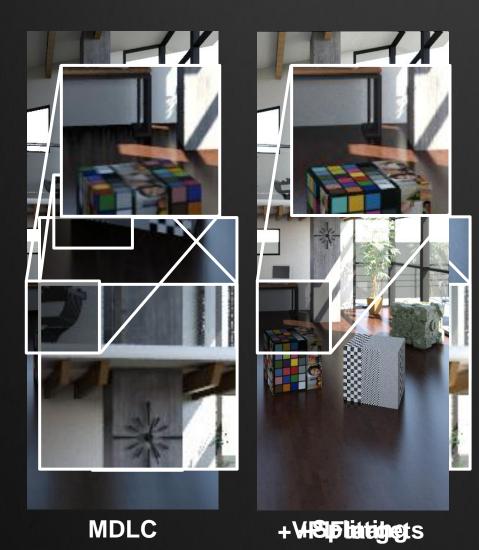
Cover Photos 1 photo


www.facebook.com/Autodesk360Rendering/photos

Overview

Advantages of Many Lights

Algorithm Overview

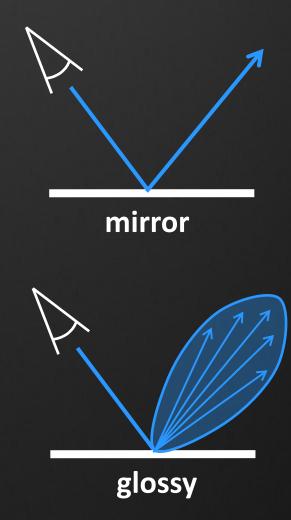


MDLC

- Multidimensional Lightcuts
 - Walter et. al., SIGGRAPH 2006
- Advantages
 - Scalability
 - Uniform light model
 - Support for advanced effects

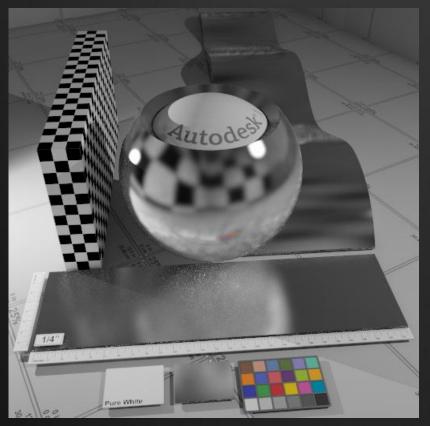
Algorithm Overview

Cloud Platforms

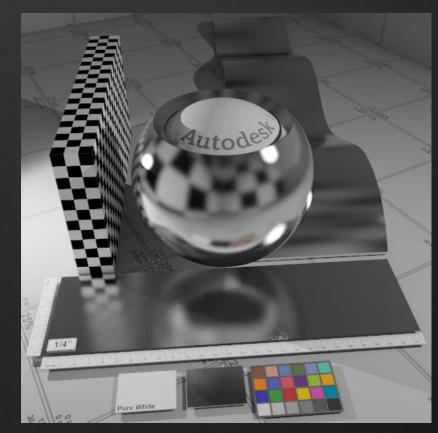

- Eye ray splitting
 - Improves glossy appearance
- Virtual Point Light Targeting
 - Reduces clamping bias in scenes with high occlusion

Polish

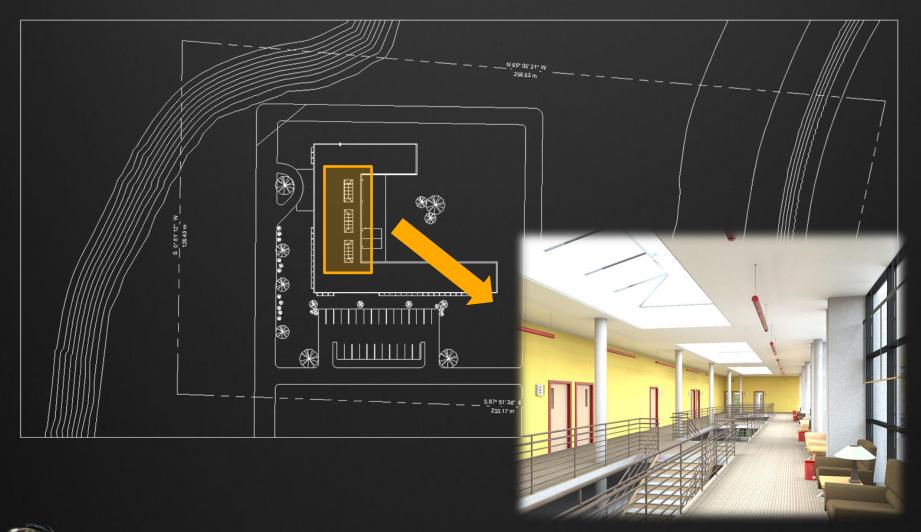
- Virtual Spherical Lights
- Directionally Variant VPLs


Issue #1: Eye Ray Splitting

- Split and recursively trace eye rays for glossy materials
- Heuristic determines split rate from material's glossiness
- Increase maximum cut size to accommodate increased sampling

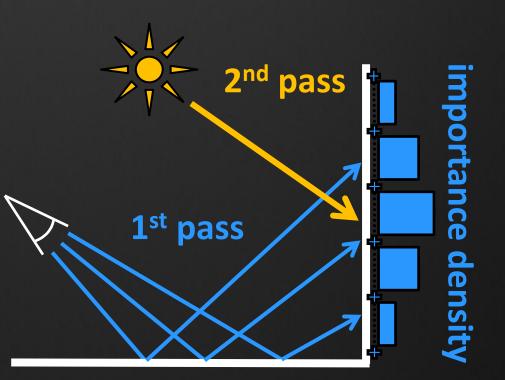


Issue #1: Glossy Objects



With Splitting

Issue #2: Big Model, Small Scene

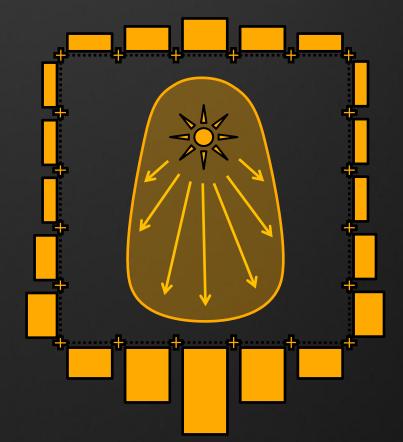

Solution #2: VPL Targeting

- VPL targeting is essential
 - Several good options discussed in Section 3 of this course
- Our focus: the global VPL distribution
 - Eye ray splitting addresses local contribution
- Similar to:
 - Per Christensen. Adjoints and Importance in Rendering: An Overview. TVCG 2003.
 - <u>Georgiev et al. Simple and Robust Iterative Importance Sampling of Virtual Point</u> <u>Lights. EG 2010.</u>

Solution #2: VPL Targeting

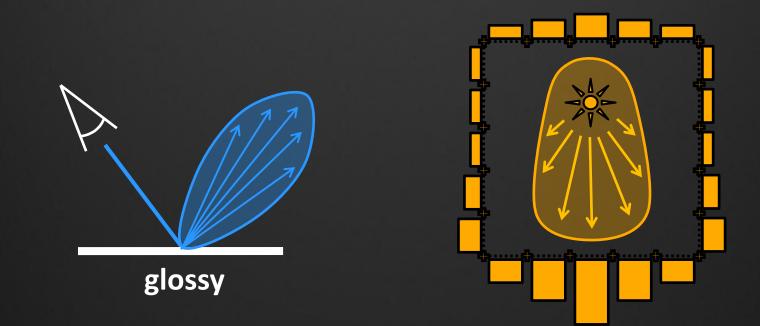
- Two-pass Algorithm
 - 1. Trace eye ray samples
 - Build importance function using eye sample density
 - Use importance function to reject VPLs with Russian roulette

Issue #2: High Occlusion

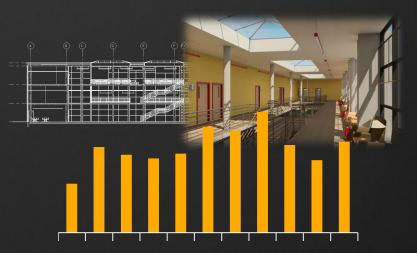

With Targeting

No Targeting

Issue #3: Directionally Variant Lights


- Measured light emission profiles are commonly used
- Easy to add
- Use the material bounding cube map to bound the light emission function

Formalized in Bidirectional Lightcuts


Bruce Walter, Pramook Khungurn and Kavita Bala, Cornell University Light Rays TUESDAY, 7 AUGUST 2:00 PM - 3:30 PM | Room 502AB

Overview

Our Algorithm

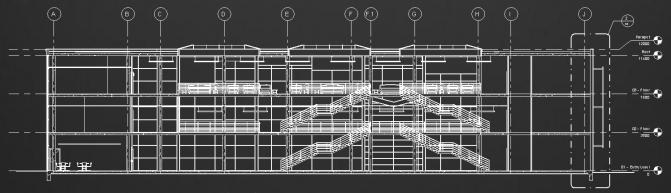
Advantages of Many Lights

Advantages of Many-Lights algorithms

- 1. Performance
- 2. Robust to design size models

- 3. Automatic render setup
- 4. Predictable cost
- 5. High quality preview

Advantage #1: Performance


Many Lights

Path Tracing – 2x Longer

Advantage #2: Supports Design-size Models

Models have many purposes.

Rendering should have minimal impact on these other applications.

Advantage #3: More Predictable Cost

Day (sky on)

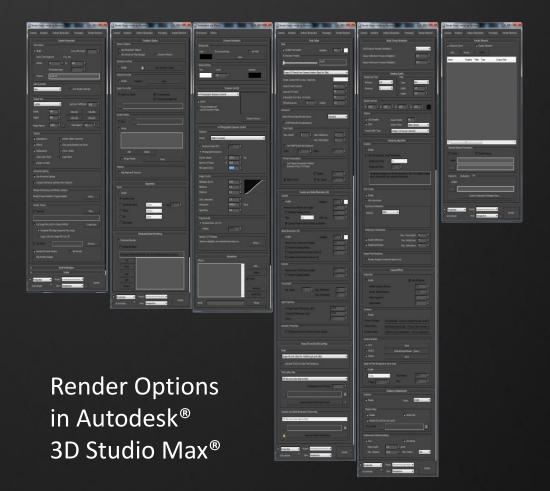
Night (sky off)

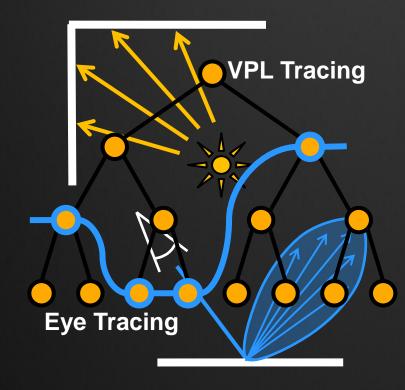
Baseline

2.5x

1.25x

2.6x


Relative Render Time by Lighting


Advantage #4: Automatic Rendering

- Configuring a render can be a challenge...
 - Requires expertise
 - Image dependent
 - Time consuming
- Especially in design visualization where users want predictive images.

Advantage #4: Automatic Rendering

Banyating

Cloud Platforms

- A many-lights algorithm's twopart structure helps automation.
- First part: Sampling
 - Sets overall lighting quality
 - Requires expert knowledge
 - Unimportant to novices
- Second part: Evaluation
 - Determines images quality
 - Easy to understand
 - Controls cost/quality tradeoff

Advantage #4: Automatic Rendering

- Many-lights algorithms facilitate automation
 - Set conservative sampling settings internally
 - Hide complex details the user
 - Use predefined quality settings for eye sampling rate and error thresholds
 - Rely on the scalable evaluation to avoid extra work

Autodesk Cloud	
Select 3D views to render using Autodesk Cloud	
3D View	Aerial
Output Type	Still Images 🔹
Render Quality	Standard 👻
Exposure	Advanced 💌
Image Size	Small (500 x 398 px)
File Format	PNG (lossless)
	Notify me by e-mail when complete
Help	Start Rendering Cancel

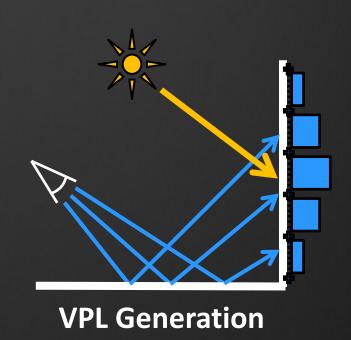
Render Options in Autodesk[®] 360 Rendering

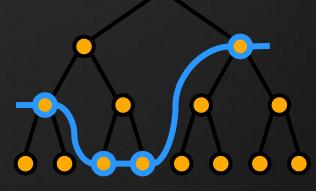
Relative Render Time By Quality (50K scenes)

* Approximate average of 32-256 adaptive sampling

Advantage 5: High Quality Preview

Autodesk [®] 360 Renderer


Path Tracer with Irradiance Caching



Future Work

- VPL Generation
 - Estimates of VPL/VSL error
 - Generalized targeting
- Error and Refinement
 - Quantification of error
 - Faster convergence
 - More efficient trees
 - Representative selection
 - Refinement ordering

Error and Refinement

Conclusion

How to you that the first that selectes? produce a large number of physically-accurate renderings didependable algorithmount of time?

- Fast and efficient
- Automatic for novice users
- Supports complex "design-size" models
- Uniform cost across quality and model
- Predictive high quality preview

Use a many lights algorithm.

Acknowledgements

My Team

John Hutchinson **Roberto Ziche** Seema Jaisinghani **Brian Budge** Nolan Goodnight William Xiao (肖健) Jacky Lee (李吉超) Yonggao Pan (潘永高) Anders Huang (黄运新) Mintao Huang (黄敏涛) Xiaoqing Zhuang (庄晓青) Ada Yan (严超) Sally Dong (董月娟) Winnie Yu (喻超华) Rick Wu (吴懿) Jieqi Ding (丁洁琦) Stella Zhou (周翊)

Cloud Platforms

Presenters

Jaroslav Křivánek Miloš Hašan Carsten Dachsbacher Alexander Keller Bruce Walter

Cornell University


Questions?

